(α+в+¢)⊃2;= α⊃2;+в⊃2;+¢⊃2;+2(αв+в¢+¢α)
1. (α+в)⊃2;= α⊃2;+2αв+в⊃2;
2. (α+в)⊃2;= (α-в)⊃2;+4αв b
3. (α-в)⊃2;= α⊃2;-2αв+в⊃2;
4. (α-в)⊃2;= f(α+в)⊃2;-4αв
5. α⊃2; + в⊃2;= (α+в)⊃2; – 2αв.
6. α⊃2; + в⊃2;= (α-в)⊃2; + 2αв.
7. α⊃2;-в⊃2; =(α + в)(α – в)
8. 2(α⊃2; + в⊃2;) = (α+ в)⊃2; + (α – в)⊃2;
9. 4αв = (α + в)⊃2; -(α-в)⊃2;
10. αв ={(α+в)/2}⊃2;-{(α-в)/2}⊃2;
11.(α + в + ¢)⊃2;=α⊃2;+в⊃2; + ¢⊃2; +2(αв + в¢ + ¢α)
12. (α + в)⊃3; = α⊃3; + 3α⊃2;в + 3αв⊃2; + в⊃3;
13. (α + в)⊃3; = α⊃3; + в⊃3; + 3αв(α + в)
14. (α-в)⊃3;=α⊃3;-3α⊃2;в+3αв⊃2;-в⊃3;
15. α⊃3; + в⊃3; = (α + в) (α⊃2; -αв + в⊃2;)
16. α⊃3; + в⊃3; = (α+ в)⊃3; -3αв(α+ в)
17. α⊃3; -в⊃3; = (α -в) (α⊃2; + αв + в⊃2;)
18. α⊃3; -в⊃3; = (α-в)⊃3; + 3αв(α-в)
ѕιη0° =0
ѕιη30° = 1/2
ѕιη45° = 1/√2
ѕιη60° = √3/2
ѕιη90° = 1
¢σѕ ιѕ σρρσѕιтє σƒ ѕιη
тαη0° = 0
тαη30° = 1/√3
тαη45° = 1
тαη60° = √3
тαη90° = ∞
¢σт ιѕ σρρσѕιтє σƒ тαη
ѕє¢0° = 1
ѕє¢30° = 2/√3
ѕє¢45° = √2
ѕє¢60° = 2
ѕє¢90° = ∞
¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)
2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)
2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв – ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
» α = в ¢σѕ¢ + ¢ ¢σѕв
» в = α ¢σѕ¢ + ¢ ¢σѕα
» ¢ = α ¢σѕв + в ¢σѕα
» ¢σѕα = (в⊃2; + ¢⊃2;− α⊃2;) / 2в¢
» ¢σѕв = (¢⊃2; + α⊃2;− в⊃2;) / 2¢α
» ¢σѕ¢ = (α⊃2; + в⊃2;− ¢⊃2;) / 2¢α
» Δ = αв¢/4я
» ѕιηΘ = 0 тнєη,Θ = ηΠ
» ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
» ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
» ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
1. ѕιη2α = 2ѕιηα¢σѕα
2. ¢σѕ2α = ¢σѕ⊃2;α − ѕιη⊃2;α
3. ¢σѕ2α = 2¢σѕ⊃2;α − 1
4. ¢σѕ2α = 1 − ѕιη⊃2;α
5. 2ѕιη⊃2;α = 1 − ¢σѕ2α
6. 1 + ѕιη2α = (ѕιηα + ¢σѕα)⊃2;
7. 1 − ѕιη2α = (ѕιηα − ¢σѕα)⊃2;
8. тαη2α = 2тαηα / (1 − тαη⊃2;α)
9. ѕιη2α = 2тαηα / (1 + тαη⊃2;α)
10. ¢σѕ2α = (1 − тαη⊃2;α) / (1 + тαη⊃2;α)
11. 4ѕιη⊃3;α = 3ѕιηα − ѕιη3α
12. 4¢σѕ⊃3;α = 3¢σѕα + ¢σѕ3α
〰〰〰〰〰〰〰〰〰〰〰
» ѕιη⊃2;Θ+¢σѕ⊃2;Θ=1
» ѕє¢⊃2;Θ-тαη⊃2;Θ=1
» ¢σѕє¢⊃2;Θ-¢σт⊃2;Θ=1
» ѕιηΘ=1/¢σѕє¢Θ
» ¢σѕє¢Θ=1/ѕιηΘ
» ¢σѕΘ=1/ѕє¢Θ
» ѕє¢Θ=1/¢σѕΘ
» тαηΘ=1/¢σтΘ
» ¢σтΘ=1/тαηΘ
» тαηΘ=ѕιηΘ/¢σѕΘ